
High-Speed Compressed Sensing Reconstruction
on FPGA Using OMP and AMP

Lin Bai, Patrick Maechler, Michael Muehlberghuber, and Hubert Kaeslin
Integrated Systems Laboratory, ETH Zurich, Switzerland

Email: lbai@ee.ethz.ch, {maechler, mbgh, kaeslin}@iis.ee.ethz.ch

Abstract—Compressed sensing allows to reconstruct sparse
signals sampled at sub-Nyquist rates. However, reconstruction of
the original signal requires high computational effort, even for
problems of moderate size. Especially for applications with real-
time requirements, software realizations are not fast enough. We
therefore present generic high-speed FPGA implementations of
two fast reconstruction algorithms: orthogonal matching pursuit
(OMP) and approximate message passing (AMP). Our imple-
mentations also support less sparse signals, which makes them
suitable for, e.g., image reconstruction. The two implementations
are optimized for highly parallel processing on FPGAs and have
similar hardware structures, which allows comparisons in terms
of resource usage and performance.

I. INTRODUCTION

Compressed sensing (CS) [1] enables the acquisition of
a signal with fewer measurements than the Nyquist rate
suggests. In order to reconstruct the original signal, this
signal must be sparse, i.e., must be represented by a small
number of non-zero coefficients in a certain basis. Reducing
the number of measurements can reduce the time or cost of
signal acquisition, which led to a large interest in CS for many
applications. Prominent examples include image acquisition,
magnetic resonance imaging (MRI), wireless communication,
and radar. While CS reduces the hardware requirements of sig-
nal acquisition, digital signal processing, necessary to recover
the original signal, becomes much more involved. Even though
much progress has been made in the development of fast
recovery algorithms, the computational complexity remains
very high.

Many of the above applications would benefit from fast
real-time reconstruction, which makes the development of fast
digital reconstruction hardware necessary. Hardware imple-
mentations are either targeted at a specific problem, which
may allow to exploit fast transforms that exist for certain bases
(e.g. Fourier, wavelet), or are general-purpose solvers, which
can be applied to any (unstructured) CS problem. The target
of this paper is to develop reconfigurable general-purpose
architectures for field-programmable gate arrays (FPGA).

Prior work: In order to speed up complex reconstruc-
tion algorithms, a number of implementations on graphics
processing units (GPU) [2] and a small number of imple-
mentations on application-specific integrated circuits (ASICs)
or reconfigurable FPGAs were reported so far. The first
ASICs implementing the greedy CS reconstruction algorithms
matching pursuit (MP), gradient pursuit (GP), and OMP
were presented in [3], [4] for channel estimation in wireless

communication systems. An FPGA implementation of OMP
for generic CS problems of dimension 32×128 was developed
in [5], processing signals up to a sparsity of K = 5. In [6],
a reconstruction algorithm similar to OMP is implemented on
an FPGA to reconstruct band-sparse signals acquired by the
modulated wideband converter. An OMP-like implementation
for problems of size 64 × 256 was proposed in [7], which,
however, does not orthogonalize the estimation in every itera-
tion. The first AMP designs [8] perform audio restoration and
solve CS problems of size 512× 1024.

Contributions: In this paper, we present highly-parallel
FPGA implementations of the two CS reconstruction algo-
rithms OMP [9] and AMP [10]. Running on a Xilinx Virtex-6
FPGA, these are the two fastest general purpose CS solvers
on FPGAs known so far. In contrast to earlier VLSI imple-
mentations, our designs can also deal with less sparse signals,
which enables, e.g., fast image reconstruction. Finally, we also
provide a comparison of hardware complexity.

Notation: Bold lower and upper case symbols stand for
column vectors and matrices, respectively. Ai represents the
ith column and Aji represents the entry at the jth row and ith
column of matrix A. AΓ is a subset of matrix A consisting
of the columns defined in the set Γ.

II. COMPRESSED SENSING

CS allows the acquisition of sparse signals at sub-Nyquist
sampling rates [1]. Measurements y = Φx with y ∈
Rm, Φ ∈ Rm×N are non-adaptive linear projections of a
signal x ∈ RN with typically m� N . Recovering the original
signal x means solving an under-determined linear equation
with usually no unique solution. If, however, x has a sparse
representation s in a basis Ψ ∈ RN×N (x = Ψs), it can,
under certain conditions, be recovered from the measurements

y = Φx = ΦΨs = Θs. (1)

Here, Θ ∈ Rm×N is the measurement matrix Θ = ΦΨ.
The sparsity of s is measured by the number of non-zero
coefficients K, often written as ‖s‖0.

III. RECONSTRUCTION ALGORITHMS

Solving (1) by finding the sparsest possible s that complies
with the measurements results in an NP-hard problem and is
computationally intractable. It is, however, possible to relax

978-1-4673-1260-8/12/$31.00 ©2012 IEEE 53

Algorithm 1 Orthogonal matching pursuit (OMP)
Input: matrix Θ, measurements y, sparsity K
Output: sparse reconstruction sK

1: r0 = y and Γ0 = ∅
2: for i = 1, ...,K do
3: λi ← argmaxj |〈ri−1,Θj〉|. Find best fitting column
4: Γi ← Γi−1

⋃
λi

5: si ← argmins‖ri−1 −ΘΓis‖22 . LS optimization
6: ri ← ri−1 −ΘΓisi . Residual update
7: end for

the reconstruction problem to a convex optimization problem,
known as basis pursuit [11].

ŝ = arg min ‖s‖1 such that y = Θs (2)

Convex optimization algorithms solving (2), such as interior-
point methods, are still too complex for real-time recovery and
are not suitable for hardware integration. Greedy algorithms,
such as MP or OMP [9], iteratively approximate the solution
of (2) by adding the best fitting element in each iteration.
They are much less complex than convex optimizers but are
not guaranteed to converge to the optimal solution. Iterative
thresholding algorithms, such as AMP, are another class of
algorithms that refine the estimation in each iteration by a
thresholding step. We chose OMP and AMP as two of the best
performing representatives of each class for implementation.
Short descriptions of both algorithms are given below together
with a discussion of implementation aspects.

A. Orthogonal Matching Pursuit

OMP [9] is a greedy reconstruction algorithm, which adds in
each iteration the best fitting column of the matrix Θ to the
current estimate (Alg. 1). A least squares (LS) optimization
is then performed in the subspace spanned by all previously
picked columns. This ensures orthogonality of the estimate to
the residual.

We solve the LS optimization problem in line 5 by QR
decomposition (QRD) ΘΓi = QR, which yields an unitary
matrix Q and an upper-triangular matrix R. QRD allows
an iterative updating of the decomposition, which reuses the
Q and R matrices calculated in the last OMP iteration.

Algorithm 2 Incremental QRD by Modified Gram-Schmidt
Input: new column Θλi ; last iteration’s Qn−1, Rn−1.
Output: Qn and Rn.

1: Rn ←
[
Rn−1 0

0 0

]
, ξn ← Θλi

2: for i = 1, ..., n− 1 do
3: Rn

jn ← (Qn−1)Hj ξ
n

4: ξn ← ξn −Rn
jnQ

n−1
j

5: end for
6: Rn

nn =
√
‖ξn‖22

7: Qn =
[
Qn−1 ξn/Rn

nn

]

Algorithm 3 Approximate message passing (AMP)
Input: matrix Θ, measurements y
Output: sparse reconstruction sImax

1: r0 = y and s0 = 0N×1

2: for i = 1, ..., Imax do
3: θ ← λ 1√

m
‖ri−1‖2

4: si ← ηθ(si−1 + ΘTri−1) . Thresholding
5: bi ← 1

m‖s
i‖0

6: ri ← y −Θsi + biri−1 . Residual update
7: end for

The QRD algorithm is implemented by the modified Gram-
Schmidt (MGS) algorithm [12] (Alg. 2), which is well suited
for hardware implementation. The incremental update saves
many operations compared to a full QRD in each iteration but
requires the storage of matrices Q and R. Having performed a
QRD, the residual update can be considerably simplified (see
[5]) by replacing line 6 of Alg. 1 with the following:

ri ← ri−1 −Qi(Qi)Tri−1

In order to calculate the final solution, back substitution is
used, which easily solves the inversion of matrix R:

sK = R−1QTy

B. Approximate Message Passing

AMP [10] is an iterative soft thresholding algorithm with
very fast convergence. Its pseudo code is listed in Alg. 3,
which follows the exposition in [8]. In each iteration, a soft
thresholding operation with threshold θ is performed:

ηθ(a) = sign(a) max{|a| − θ, 0}

The threshold θ is set proportionally to the regularization
parameter λ and the root mean square error (RMSE) of the
residual (see [8]). During the update of the residual on line 6
of Alg. 3, a correction term involving the residual of the
previous iteration is applied. This correction term leads to a
very fast convergence, typically within 10 ∼ 100 iterations,
depending on the measurement matrix, size, and sparsity of
the reconstruction problem.

IV. HARDWARE IMPLEMENTATION

In this section, we present FPGA designs of OMP and AMP.
Using similar architectures allows to compare hardware com-
plexity and performance. Both designs are highly pipelined
and optimized for high-throughput processing. Control is
realized by multiple cooperating finite state machines (FSMs).

A. OMP Implementation

The execution of OMP includes two computationally expen-
sive steps, which are the matrix-vector multiplication ΘTr on
line 3 and the LS optimization on line 5 in Alg. 1. To speed
up these operations, a large number of parallel multipliers
P is instantiated and configured as a vector multiplication
unit (VMU), which is the central computation unit of the

54

RAM

RAM

RAM
 QR

BS
MULT

Θ

18

P*18

MAX

SRR

18

18

42

18

42

42

y ŝ

ŝ

P*25

18

REG
y & r

P*42
VMU

Fig. 1. High-level block diagram of OMP

architecture, as shown in Fig. 1. Thus, the main challenge
of this design is to supply the VMU with enough parallel data
at high speed. To do so, the memory storing Θ is split into
many block RAMs that can be accessed in parallel. Each block
RAM holds one row of Θ. Other memories, such as the ones
for the measured vector y and the residual r are implemented
as register banks, where each element is accessible in parallel.

While the VMU is shared for most of the computations, a
few additional hardware units perform specialized tasks. The
MAX unit finds the maximum index from the correlations with
columns of Θ. In the BS MULT unit, the back substitution
in the LS algorithm is computed using one multiplier and one
adder. An operation which also needs specialized hardware
is the square root reciprocal (SRR) computing 1/Rn

nn in the
QRD, which combines parts of lines 6 and 7 in Alg. 2 and
makes explicit division unnecessary.

1) Vector multiplication unit (VMU): The OMP VMU has
multiple operation modes that allow to compute all multipli-
cation operations in OMP.
• In the matrix-vector mode, the unit multiplies one column

of a matrix with a vector in parallel and adds up all
coefficients in a subsequent adder tree. This mode is used
for the calculation of ΘTr and QRD.

• In the subtraction mode, a second vector is subtracted
from a vector-scalar product. This is used during QRD
and the residual update.

• In the scalar mode, the VMU multiplies a vector with a
scalar and outputs the results in parallel.

2) Square root reciprocal: The SRR is implemented ac-
cording to [13] using a look-up table to obtain a first es-
timation, followed by a modified Newton-Raphson step. In-
and output signals are scaled to cover a higher dynamic
range. Using only one Newton-Raphson iteration proved to
be accurate enough for our application.

B. AMP Implementation

The AMP architecture uses a slightly modified VMU as
central processing block. This allows to efficiently compute
the matrix-vector multiplications on lines 4 and 6 of Alg. 3.
A number of small additional blocks are necessary to com-
pute the remaining operations. The L0 block calculates b by
counting the number of non-zero elements. The RMSE unit is
responsible for computing the threshold θ, which is then fed
into the TRSH block that performs soft thresholding.

RAM
 y

RAM

RAM
 res

RAM

RMSE
VMU

L0

Θ

ŝ

ŝ

y

TRSH

18

18 18

18

18

18

18

P*25

Fig. 2. High-level block diagram of AMP

1) Vector multiplication unit (VMU): Similar to the OMP
implementation of the VMU, different operation modes need
to be supported. As an important difference, however, AMP
needs to perform multiplications with Θ as well as its trans-
posed ΘT . As the elements of Θ are stored column-wise, i.e.,
only the coefficients of one row can be accessed in parallel, the
two operations need to be computed with different operation
principles.

• Parallel mode (Fig. 3(a)): In order to perform a multi-
plication with ΘT , each entry of the resulting vector is
computed by a parallel multiplication of one row of ΘT

followed by an addition of all multiplication results in
an adder tree. As this mode outputs the resulting vector
serially, the subsequent thresholding operation can be
computed in a simple serial unit.

• Serial mode (Fig. 3(b)): In order to perform a multi-
plication with Θ, each entry of the resulting vector is
computed serially on a single multiplier, configured as
a multiply-accumulate (MAC) unit. In this mode, the
resulting vector is presented in parallel at the output of
the MAC array, which is then serially stored into a RAM.

The support of those two modes makes this implementation
especially suitable for measurement matrices stored in RAMs.
This is in contrast to the architecture [8] which supports only
one mode and requires the measurement matrix to be generated
with parallel access on both, rows and columns.

2) Root mean square unit: In order to calculate the RMSE,
a multiplier is instantiated to serially square and accumulate
the entries of the residual. The square root is then approxi-
mated by the method proposed in [14].

(a) VMU in parallel mode (b) VMU in serial mode

Fig. 3. AMP vector multiplication unit with P = 2

55

C. Fixed-Point Operation

To allow for fast and energy-efficient computations, fixed-
point operations are used throughout the implementation. The
word-widths (annoted in Fig. 1 and 2) were optimized to
simultaneously obtain near-floating-point performance and fit
well on the DSP structures available on the FPGA. The input
and output signals of both algorithms use 18 bit. The most
important parameters are the word-widths of the VMU, which
are set to 18 bit and 25 bit on the inputs and 42 bit on the
accumulator. The measurement matrix Θ is stored with an
accuracy of 25 bit.

V. IMPLEMENTATION RESULTS

Both algorithms were implemented on a Xilinx Virtex-6
XC6VLX240T FPGA (speed grade -1) with the same through-
put target for problems with a matrix Θ of size 256 × 1024
and with P = 256 parallel multipliers. AMP is configured
to perform a fixed number of Imax = 40 iterations. In the
same time, OMP can perform 36 iterations, which also sets
the supported sparsity to K = 36. The implementation results
with corresponding resources usages (and device utilizations
in parentheses) are shown in Table I. Note that AMP requires
less than half the number of slices compared to OMP, which
is mainly due to the additional register banks for y and r.
OMP also requires additional memories for the Q and R
matrices. Since the memory storing Θ dominates block RAM
usage, RAMs for Q and R only lead to a small increase in
RAM usage. Further, AMP achieves a higher maximum clock
frequency compared to OMP, mainly because the VMU block
is used in more configurations than in AMP, which results in
more complex input multiplexers.

In order to test the circuitry, a UART interface to a PC has
been implemented, which allows to download measurement
vectors to the FPGA and to retrieve the reconstructed sparse
estimates. An evaluation of the hardware was performed using
four times sub-sampled images in blocks of size 32×32 pixels.
The images are assumed to be sparse in the wavelet basis.
Thus, Ψ implements a 2-dimensional wavelet transform and
Φ is a Gaussian matrix. For the processed example image
(Lena with size 256 × 256), OMP achieves a reconstructed
signal-to-noise ratio of 23.5 dB, while AMP achieves 21.4 dB.
The performance of floating-point Matlab implementations is
0.6 dB and 0.4 dB better for OMP and AMP, respectively.

In general, OMP is faster for very sparse signals, as the
processing time increases quadratically with sparsity K. Since
the processing time of AMP is not strongly dependent on K,
it is more efficient than OMP for problems with larger K.

Compared to a reconstruction by Matlab on a PC with one
2.6 GHz dual-core CPU, the FPGA implementation is 4000
times faster for OMP and > 5000 times faster for AMP. When
scaling our OMP implementation down to the much smaller
problem size of [5] and mapping it to a Virtex-5 FPGA, our
implementation shows 1.5× faster speed. No other hardware
implementations of OMP supporting as high K as ours are
known.

TABLE I
FPGA IMPLEMENTATION RESULTS (XILINX VIRTEX-6)

AMP OMP

Frequency [MHz] 165 100

Proc. time [µs] 15.81 · Imax 10.97 ·K + 0.59 +
KP

l=1
0.34 · l

Slices 12113 (32%) 32010 (84%)
Block RAMs 256 (61%) 258 (62%)
DSP slices 258 (33%) 261 (33%)

VI. CONCLUSIONS

In this paper, we presented two fast and highly parallel
FPGA implementations of the OMP and AMP algorithms.
Both implementations solve generic CS problems of size
256× 1024 with reconfigurable measurement matrices. While
AMP has lower hardware requirements and is more suitable
for less sparse problems, OMP performs faster for recovery
problems with, in our case, less than 36 non-zero coefficients.
With a reconstruction time of only 0.63 ms for a 32 × 32
image block, these implementations show the feasibility of
CS reconstruction for real-time applications.

REFERENCES

[1] D. Dohono, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[2] M. Andrecut, “Fast GPU implementation of sparse signal recovery from
random projections,” Engineering Letters, vol. 17, no. 3, pp. 151–158,
Aug. 2009.

[3] P. Maechler, P. Greisen, N. Felber, and A. Burg, “Matching pursuit:
Evaluation and implementation for LTE channel estimation,” in Proc.
ISCAS, Paris, France, May 2010, pp. 589–592.

[4] P. Maechler, P. Greisen, B. Sporrer, S. Steiner, N. Felber, and A. Burg,
“Implementation of greedy algorithms for LTE sparse channel estima-
tion,” in Proc. 44th Asilomar Conf. Signals, Systems and Computers,
Pacific Grove, CA, USA, Nov. 2010, pp. 400–405.

[5] A. Septimus and R. Steinberg, “Compressive sampling hardware recon-
struction,” in Proc. ISCAS, May 2010, pp. 3116–3119.

[6] M. Mishali et al., “Generic sensing hardware and real-time reconstruc-
tion for structured analog signals,” in Proc. ISCAS, May 2011, pp. 1748–
1751.

[7] J. Stanislaus and T. Mohsenin, “High performance compressive sensing
reconstruction hardware with QRD process,” in Proc. ISCAS, May 2012,
pp. 29–32.

[8] P. Maechler, C. Studer, D. Bellasi, A. Maleki, A. Burg, N. Felber,
H. Kaeslin, and R. Baraniuk, “VLSI design of approximate message
passing for signal restoration and compressive sensing,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 3,
2012.

[9] J. Tropp and A. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4655–4666, Dec. 2007.

[10] D. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms
for compressed sensing,” in Proc. of the National Academy of Sciences,
vol. 106, no. 45, Sep. 2009, pp. 18 914–18 919.

[11] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, Aug. 2001.

[12] G. H. Golub and C. F. Loan, Matrix Computations, 3rd ed. Johns
Hopkins University Press, 1996.

[13] M. Ercegovac, L. Imbert, D. Matula, J. Muller, and G. Wei, “Improving
goldschmidt division, square root, and square root reciprocal,” IEEE
Trans. on Computers, vol. 49, no. 7, pp. 759–763, Jul. 2000.

[14] I. Park and T. Kim, “Multiplier-less and table-less linear approximation
for square and square-root,” in Proc. ICCD, Oct. 2009, pp. 378–383.

56

