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Abstract—This paper presents the FPGA design of a convolu-
tional neural network (CNN) based road segmentation algorithm
for real-time processing of LiDAR data. For autonomous vehicles,
it is important to perform road segmentation and obstacle
detection such that the drivable region can be identified for path
planning. Traditional road segmentation algorithms are mainly
based on image data from cameras, which is subjected to the
light condition as well as the quality of lane markings. LiDAR
sensor can obtain the precise 3D geometry information of the
vehicle surroundings. However, it is a computational challenge to
process a large amount of LiDAR data at real-time. In this work,
a convolutional neural network model is proposed and trained
to perform semantic segmentation using the LiDAR sensor data.
Furthermore, an efficient hardware design is implemented on the
FPGA that can process each LiDAR scan in 16.9 ms, which is
much faster than the previous works. Evaluated using KITTI
road benchmarks, the proposed solution achieves high accuracy
of road segmentation.

Index Terms—Autonomous vehicle, road segmentation, CNN,
LiDAR, FPGA

I. INTRODUCTION

In recent years, we have witnessed a strong increase of re-
search interests on advanced driver assistance systems (ADAS)
and autonomous vehicles. While fully autonomous driving
might still be years away, there are many recent research on
traffic scene perception and its implementations on various
platforms. The traffic scene perception task can be separated
into two sub-tasks: object detection and road/lane detection.
Object detection includes vehicle detection [1] [2] [3] [4] [5],
pedestrian detection [6] [3] [4] and traffic light/sign detection
[7] [8] [9] [10] [11], while road/lane detection includes road
marking detection [12] [13] [14], lane detection [15] [16] [17]
and road segmentation [18] [19] [16]. In this work, we are
primarily concentrating on road segmentation, since it is a
fundamental component of automated driving that provides
the drivable region for the vehicle’s next movement.

Many sensing modalities have been used for road segmen-
tation. Monocular vision [16] [5] [20] and stereo vision [21]
[22] are often employed because cameras are low-cost and
have a similar view to human eyes. However, considering
road appearance diversity, image clarity issues, poor visibil-
ity conditions [23], image-based feature describers are often
difficult to generate and easy to fail. In contrast of passive
sensors such as cameras, light detection and ranging (LiDAR)

actively emits laser beams and measures the distance from
the reflection by time of flight (TOF). Therefore, LiDAR is
robust to environmental illumination. Several recent works
have studied road segmentation based on LiDAR information
or the combination of LiDAR and camera data [24], [25].

For the applications of autonomous vehicles, both real-time
performance and power consumption need to be considered
[26]. Graphic Processing Unit (GPU) is a popular platform
for parallel processing, but power consumption is usually high.
FPGA suits to the condition with limited power supply, such
as an autonomous vehicle. Moreover, FPGA can be developed
as a customized integrated circuit that can perform massive
parallel processing and data communications on-chip. Hereby,
we propose to target the LiDAR based road segmentation
algorithm on an FPGA as a real-time low-power embedded
system.

In this paper, the problem of road segmentation is framed as
a semantic segmentation task in spherical image using a deep
neural network. Instead of an encoder-decoder structure often
implemented in traditional neural networks, a block containing
a convolutional layer and a non-linear layer is cascaded twelve
times so that multiplexing can be applied on the processing
blocks on-chip. The proposed solution is evaluated on KITTI
benchmarks and achieve satisfactory result. The rest of paper
is organized as follows. Section II introduces the related
work of road perception problem. The proposed convolutional
neural network (CNN) structure and its performance on KITTI
benchmarks are presented in Section III. Section IV presents
the FPGA design hardware architecture and implementation
results. Finally Section V concludes the paper.

II. RELATED WORK

Road segmentation has been studied with different sensors
and algorithms over the past decade. In the early years,
researchers used manually designed feature descriptors to
separate the road from others. At that time, camera was the
main sensor and features were often generated based on the
illumination and shapes from images [14] [16] [27], which led
to low accuracy and the performance variations from different
light conditions and road scenes.

Recently, two major techniques have been investigated to
overcome the shortcomings of manually selected features in
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images. One is to use machine learning to design a complex
and robust feature descriptor, such as CNN [28] [4] [20] and
conditional random field (CRF) [29]. The other is to use
intensity invariant sensor or multi-sensor fusion instead of
camera to obtain a more robust descriptor. A popular intensity
invariant sensor is LiDAR [30]. There were also research
works trying to combine those two and apply machine learning
to data processing. Several results showed high accuracy, but
their processing time is too long to be employed for real-
time applications [25] [24]. For autonomous driving, road
segmentation must be implemented on real-time embedded
platforms such as FPGA, application-specific integrated circuit
(ASIC), or a mobile CPU/GPU processor. A neural network
was proposed in [31] to detect lane markers on the road and
had the run-time of 2.5 Hz on TK1 mobile GPU platform.
Similarly, research work in [32] proposed a neural network
to segment multiple objects including vehicle, pedestrian and
pavement and achieved 10 Hz run time at the resolution of
480-by-320 pixels on TX1 GPU platform. In [15] and [33],
FPGA based solutions are proposed for lane detection and
resulted 60 Hz and 550 Hz processing speed, respectively.

III. ALGORITHMS DESIGN

The goal of road segmentation is to label the drivable
region, also called free space. The input data comes from
different sensors such as camera, LiDAR, GPS and IMU.
The output are usually presented as area on the top-view
or labeled pixels on camera view. In this paper, we choose
LiDAR data as input, a deep neural network as the processor,
and top-view predictions as the main output to evaluate the
road segmentation performance. Results on camera view are
also presented for better visualization. The proposed algorithm
has the following three steps: pre-processing, neural network
processing and post-processing.

A. Pre-processing

During pre-processing, input data points are arranged and
projected into a 3-D blob with M by N tensors and C channels
so that the tensor can flow through the layers in the neural
network to produce an output. A tensor refers to a specific
view in the real world. There are four types of views available
for the autonomous driving task: image view (also known
as camera view), top view (also known as bird eye view),
cylindrical view and spherical view. Image view and top view
are commonly choices, because in this two views LiDAR data
can be fused with camera data and those views are natural to
human eyes. However, LiDAR points are sparse in those views.
Statistically, LiDAR points covers only 4% of pixels in image
view and 5.6% on top-view. That means the majority inputs
into the neural network are zeroes, which leads to a waste
of computing resource. Cylindrical view and spherical view
match the LiDAR sensing scheme and data points can cover
up to 91% pixels on the map. Hereby we choose spherical
view as the projection scheme. The resolution of polar angle
θ and azimuthal angle ϕ are chosen based on the LiDAR
resolution. In this work, all 64 rows are included in vertical. In

Figure 1: Grid projection to ground from different views

Figure 2: An illustration of camera view and the corresponding
LiDAR points.

horizontal, LiDAR points are grouped by 0.4◦, which doubles
the designed resolution of LiDAR to minimum the number of
cells without any LiDAR measurements. The input blob has
256 columns and FOV can be shifted to augment training data.

Although spherical view is chosen for data projection, we
can still add additional feature channels from other views
to improve the accuracy of the trained neural network. Here
we select 16 channels. The first 7 channels come from the
LiDAR point which has the lowest altitude in the cell, and the
next 7 channels come from the LiDAR point which has the
highest altitude. Each group of 7 channels includes location
of measured points in Cartesian coordinate (x,y,z), location of
measured points in spherical coordinate (θ, ϕ, r), and reflection
intensity of measured points (H). The remaining 2 channels
are the location of cell on the 2D map (i, j).

B. Neural network processing

In autonomous driving, traffic scene perception is often im-
plemented on embedded systems. In consideration of limited
computational resource in an embedded system, we propose a

Figure 3: Input map to the neural network with 16 channels.
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Figure 4: Architecture of the convolutional neural network for
road segmentation.

new network architecture that minimize the GPU and FPGA
memory by multiplexing the blob memory. The architecture is
shown in Figure 4. Except for the first and last convolutional
layers, those 9 layers in between are constructed using the
same structure. Each repetitive structure includes a convolu-
tional layer and an activation layer. The convolutional layer
is built with 64 filters and each filter has a 5× 5 kernel with
stride size of 1 and padding size of 2. The stride and padding
settings is chosen such that the output of the convolutional
layer has the same size as the input. Rectified linear unit is
chosen as the activation function for fast training. Two drop-
out layers are added after 6th block and 10th block in training
phase to accelerate convergence. It can be seen that there is
no pooling layers and all blobs have the same size except for
the input blob and score blob. Therefore all internal results
can be stored in the same memory space directory without
allocation or reshaping the blob. We choose 5×5 convolutional
kernel size and 11 convolutional layers from our experimental
results showing this settings is a good trade-off between CNN
performance and resource usage.

C. Post-processing

In post-processing, results obtained from the neural network
are projected back to target views, i.e. camera view and
top view, for performance validation. The challenge of the
post-processing is that the points in the output of neural
network are non-uniformly distributed on the target view after
projection. Traditional image processing methods, such as
dilation, erosion, closing and opening, are not able to generate
a filled area with smoothed contour. In our post-processing
step, contour of the drivable area is firstly determined and then
the region within the contour is marked as the segmentation
results on target views. Figure 5 shows an example of the road
segmentation results.

To determine the contour of the drivable area, the furthest
points in each angle θ, which is corresponding to each column
of the neural network output, are selected and projected onto
the target view. Subsequently, a polyline is drawn along those
furthest points on all angles on the target view. The polyline
graph becomes a polygon if we add a straight line at the
bottom. The polygon is then treated as the contour of drivable
area and filled up with semantic pixel labels.

D. Training and evaluation on KITTI road benchmark

To evaluate the performance of the proposed approach, we
train the network on KITTI road/lane detection dataset. As

Figure 5: Drivable area on camera view and top view projected
from the neural network output

Table I: Comparison with existing results on KITTI road/lane
detection dataset.

Name F1-score AP run time
This work on FPGA 91.79% 84.76% 16.9ms

HybridCRF [25] 90.81% 84.79% 1500ms
LidarHisto [35] 90.67% 84.79% 100ms

MixedCRF 90.59% 84.24% 6000ms
FusedCRF [24] 88.25% 79.24% 2000ms

RES3D-Velo [36] 86.58% 78.34% 360ms

described in [34], F1-score and average precision (AP) are the
key metrics to evaluate the performance of road perception
algorithms. F1-score provides the insight of an algorithm’s
optimal performance, while AP indicates its average perfor-
mance. The metrics are computed as Equation 1 to 6 in
[34], where TP, TN, FP, FN are true positive, true negative,
false positive, and false negative respectively. In Table I, we
compare our proposed approach with several results published
recently. It shows that our proposed approach has comparable
performance but requires significantly less processing time.
The actual processing time of the neural network implemented
on the FPGA is about 16.9ms. Since most of the execution
times listed in Table 1 were from various GPU platforms, we
also evaluate our algorithm on a K20 GPU using MATLAB
on Caffe and the total processing time is about 120ms,
including pre-processing, neural network, post-processing, and
visualization.

IV. HARDWARE ARCHITECTURE

As described in Section III, we organize the LiDAR data
into an image map with 16 channels in the size of 256×64. The
block diagram of the convolutional layer architecture is shown
in Figure 6. The same convolutional unit is used repetitively.
There are 64 memories to store intermediate feature map and
each memory size is 256k bits. The large 3D convolution can
be broken into 64 parallel 2D convolutions, each with 2 filters,
followed by an adder tree to generate the feature map.

A. Zero padding generation

Zero padding helps to control the size of feature maps and
to reserve the boundary information of the input images in
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Figure 6: Hardware architecture of the implementation of
convolution layer.

Figure 7: An illustration of the zero-padding in the RAM

convolution operation. Since the input images are transmitted
without padding, a special dual-port RAM is designed for
convolutions. As shown in Figure 7, each slot of RAM
represents one column of the input image. The padded zeros
are stored in the block RAM in advance. Control logic is used
to store each pixel into proper memory location. On the other
side of the memory, a scanning circuit reads out data from this
RAM pixel by pixel.

B. 2D convolution

2D convolution is implemented in conjunction with a line
buffer which consists of 4 lines and 5 additional registers. As
demonstrated in Figure 8, it outputs 5 × 5 pixel window in
parallel for the multiplication with the weight matrix using
25 multipliers. A highly pipelined adder tree follows the
multiplication to compute the sum.

C. Control logic

Because of the large RAM consumption for images with
zero padding and feature maps, a loop-based control is pro-
posed. Each 2D convolution generates 2 feature maps. One
finite state machine is used to generate 64 feature maps in 32
loops, reusing the block RAM for images with padding. To
achieve 11 layers of convolution, another finite state machine
is implemented for loop control. Therefore, completing the 11
fully convolutional layers with each depth of 64 requires to
perform 352 times of the 2D convolutions.

Figure 8: Line buffer for 2D convolution.

Table II: Resource usage of the neural network implementation
on an FPGA

Used Available Utilization
Slice Registers 43726 1326720 3.30%
Slice LUTs 18684 663360 2.82%
Block RAM Tile 1513 2688 70.05%
DSPs 4480 5520 81.16%

D. Implementation results

We implement this fully convolutional network on Xilinx
UltraScale XCKU115 FPGA. The targeted operating fre-
quency is set to 350MHz. Each 2D convolution takes about
18,000 clock cycles. It takes about 16.9ms to complete all
11 convolutional layers, each with filter depth of 64 (except
for depth of 16 in the first layer and the depth of 2 in
the last layer). Since LiDAR normally scans at 10Hz, this
FPGA implementation fulfills the requirement of real-time
processing. When tested on the Intel Xeon CPU E5-2687W
v3, the processing time is about 500ms. Therefore, the FPGA
implementation gains the speedup factor of 30 over CPU. The
resource usage of the FPGA implementation is listed in Table
II.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a neural network based approach
for road segmentation using LiDAR data. The neural network
is trained with KITTI road/lane detection dataset and evaluated
on its test benchmark. Moreover, the proposed fully connected
neural network is implemented on an FPGA for real-time low-
power processing, which results the processing time of only
16.9ms for each LiDAR scan. The implementation consumes
a large amount of FPGA on-chip memory. For future work,
we are considering using the external DDR4 SDRAM to store
feature maps. We also notice during testing that sidewalk and
railway with same altitude as road pavement contributes to the
majority of false positives. Fusion of LiDAR and camera data
is needed to further improve the accuracy.
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