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Abstract—Convolutional neural networks (CNNs) have been
widely deployed in the fields of computer vision and pattern
recognition because of their high accuracy. However, large
convolution operations are computing intensive and often require
a powerful computing platform such as a Graphics Processing
Unit (GPU). This makes it difficult to apply CNNs to portable
devices. The state-of-the-art CNNs, such as MobileNetV2 and
Xception, adopt depthwise separable convolution to replace the
standard convolution for embedded platforms, which significantly
reduces operations and parameters with only limited loss in
accuracy. This highly structured model is very suitable for
Field-Programmable Gate Array (FPGA) implementation. In
this paper, a scalable high performance depthwise separable
convolution optimized CNN accelerator is proposed. The ac-
celerator can be fit into an FPGA of different sizes, provided
the balancing between hardware resources and processing speed.
As an example, MobileNetV2 is implemented on Arria 10 SoC
FPGA, and the results show this accelerator can classify each
picture from ImageNet in 3.75ms, which is about 266.6 frames
per second. The FPGA design achieves 20x speedup if compared
to CPU.

Index Terms—convolutional neural network, FPGA, hardware
accelerator, MobileNetV2.

I. INTRODUCTION

OWADAYS, convolutional neural networks (CNNSs) have

become the center of interest, due to their superior per-
formance in tasks ranging from image classification, semantic
segmentation, to object detection and tracking. This technique
has also been widely used in the industry, such as autonomous
driving, video surveillance, speech recognition, etc.

CNN is a computing intensive model. It consumes huge
amounts of computing power during training and deployment.
In practice, Graphics Processing Units (GPUs) are often
selected as the platform. However, GPU’s natural of high
power consumption limits its application in embedded scenario
such as portable devices and wearable systems. Therefore,
Field-Programmable Gate Arrays (FPGAs) and Application-
Specific Integrated Circuits (ASICs), as the replacement of
GPUs, are adopted in neural network applications [1[|—[12].
More specifically, increasing research attention is focused on
FPGA-based CNN accelerator due to the possibility of trade-
off between power consumption and reconfigurability.

To further lighten the computing burden of standard convo-
lution, depthwise separable convolution is proposed in [13].
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This has been applied in MobileNetV1 [14]] and later Mo-
bileNetV2 [15], and thus achieved comparable results with
much less multiply-accumulation operations and parameters.

Almost all the existed FPGA-based CNN implementation
works were to explore memory bandwidth and computing
parallelism limitations. To conquer the limitation of memory
bandwidth, [2] and [3] stored the parameters in on-chip
memory. However, as CNN goes deeper, parameters required
by convolution increase sharply, which makes the on-chip
memory solution inefficient. Other works like [4] [5] [6]
alleviated the pressure on off-chip memory through limiting
the parameters precision of the neural networks, as lower
numerical precision were proved to be sufficient for CNN
[16] [17]. In [7] [8], computing engine was optimized for
highly parallelism in computation. [[6] proposed a pipeline
based solution for CNN for high throughput. [9] made a
comprehensive evaluation and comparison of Altera and Xilinx
OpenCL frameworks for CNN. [10]] explored the sparsity-
based optimizations, which could achieve up to 3x higher core
energy efficiency and raise the device-level energy efficiency
by around 70% through data compression. Both [[11f] and [[12]
implemented separable depthwise convolution with the exam-
ple MobileNetV1, and achieved processing speed at 7.85ms
per image and 231.7 frames per second (fps) respectively.

The key contributions of this work are:

(1) A high performance CNN hardware accelerator frame-
work is proposed where all layers are processed in a computing
unit named matrix multiplication engine.

(2) The utilization of hierarchical memory structure and
ping-pong on-chip buffer reduces the bandwidth limitation of
off-chip memory.

(3) A methodology for scalable design is proposed, so that
this framework can be implemented in various FPGAs, through
balancing the on-chip resources and performance.

(4) By applying the proposed framework and methods, the
state-of-the-art CNN, MobileNetV?2 [[15]], for the first time, is
implemented on Arria 10 SoC FPGA. The results show 266.6
frames per second and 170.6 Giga Operations Per Second
(GOPS) at system clock frequency of 133MHz. This represents
a 20x speedup comparing to that on CPU [15]].

This paper is organized as follows. Section provides
fundamental knowledge of depthwise separable convolution,
followed by one of its application, MobilNetV2. Section [[TI| de-
scribes the architecture of the accelerator, including the matrix
multiplication engine, and on-chip buffer organization. System
implementation and its results are discussed in Section[[V] The
conclusion is given in Section [V]



II. DEPTHWISE SEPARABLE CONVOLUTION
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Fig. 1. Comparison of different convolution types

Depthwise separable convolution was first introduced in
[18]. As one kind of the factorized convolutions, depthwise
separable convolution factorizes the standard convolution into
a depthwise convolution plus a pointwise convolution. Fig.
demonstrates how the standard convolution (SC), depthwise
convolution (DWC) and pointwise convolution (PWC) work.
In standard convolution, each input channel has to do a
convolution with one specific kernel, and then the result is
the sum of the convolution results from all channels. While in
depthwise separable convolution case, depthwise convolution
is the first step, performing the convolution for each input
channel individually. The next step is to do convolution in
pointwise, which is actually a standard convolution with kernel
size 1x 1. Comparing to standard convolution, using depthwise
separable convolution considerably reduces the number of
mathematical operations and the number of parameters.

As it is shown in Fig. [I] considering the input feature map
with size M x M x N and kernel size K x K x N x P, in
case of stride length of 1, the number of weights needed for
standard convolution is [14]]

Wsec=K xKxNXxP (D
and the corresponding number of operations is

Osc =MxMxKxKxNxP )

In case of depthwise separable convolution, the total number
of weights is

Wpsc =K xK xN+ N xP 3)
and the total number of operations is
Opsc=MxMxKxKXxN+MxMxNxP 4)

Thus, the reduction factors on weights and operation are
calculated in (GHE):
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One of the typical application of depthwise separable
convolution is MobileNetV2, the successor of MobileNetV1
[14]. Comparing to its first version, the newly proposed
MobileNetV2 further decreased the number of weights by
shrinking the output channels in some layers. It also improves
its performance through importing one more pointwise convo-
lution layer before the depthwise separable convolution. The
new operation is called bottleneck (Fig. 2).
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Fig. 2. Bottleneck operations in different strides

The network structure of MobileNetV2 is illustrated in
Table [

TABLE I
MOBILENETV2 STRUCTURE [|15]], WHERE EACH LINE REPRESENTS A
SEQUENCE OF 1 OR MORE IDENTICAL (EXCEPT STRIDE) LAYERS. ALL
DEPTHWISE CONVOLUTIONS USE 3X3 KERNELS.

extend output repeat
input operator factor | channel time stride

224x224x3 standard conv. - 32 1 2
112x112x3 bottleneck 1 16 1 1
112x112x16 bottleneck 6 24 2 2
56x56x24 bottleneck 6 32 3 2
28x28x32 bottleneck 6 64 4 2
14x14x64 bottleneck 6 96 3 1
14x14x96 bottleneck 6 160 3 2
7x7x160 bottleneck 6 320 1 1
7x7x320 pointwise conv. - 1280 1 1
7x7x1280 avgpool 7x7 - - 1 -

1x1x1280 pointwise conv. - 1000 -




III. SYSTEM DESIGN
A. Architecture Overview

The block diagram in Fig. [3] gives an overview of this
accelerator. The proposed matrix multiplication engine (MME)
array in this paper is responsible for all the CNN operations,
including convolution, normalization, ReLU and pooling. All
the parameters and input images are stored on off-chip mem-
ory. A ping-pong weight buffer is placed between MME array
and memory to maximize the bandwidth. Biases are loaded
to the registers in MME array. Feature map buffer stores all
the intermediate feature maps to avoid the latency brought by
off-chip memory read and write. The accelerator is controlled
by a general finite state machine (FSM).

Matrix Multiplication
Engine (MME) Array

feature map
buffer

weight
buffer

accelerator architecture

memory

Fig. 3. Block diagram of accelerator system

B. Matrix Multiplication Engine

In this paper, each MME consists of 32 slices line buffer,
32 slices 3 x 3 multiplier array, 1 adder tree, 1 normalization
(Norm) block, 1 ReLU block and 1 pooling block (Fig. ). In
each convolution, MME loads the feature maps and weights to
line buffers. After multiplication in multiplier array, adder tree
sums the products according to the selected convolution type.
The following operations are optional normalization, ReLU
and pooling.
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Fig. 4. Block diagram of an MME

1) Line Buffer: The working length of line buffer can be
selected by control FSM to fit different input sizes, as it is
illustrated by Fig.|5| The implementation length is (K — 1) X
M+ K.

2) Adder Tree: Adder tree is configurable to do the sum-
ming operation in depthwise or pointwise (Fig. [6). In Fig.
black lines or blocks are shared by both types of convolution.
Blue part is used when doing depthwise convolution. While
red part works if pointwise convolution is selected. All the
biases all added in this stage.
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Fig. 5. Line buffer in MME
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Fig. 6. Adder tree modes for different convolution
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Fig. 7. Block diagram of adder tree

3) Standard Convolution: To avoid losing too much infor-
mation, standard convolution is adopted to do the first layer
convolution. Therefore, this accelerator is adapted to be able to
do the standard convolution with input feature map channel is
3. For vision applications, the channel number of input feature
map is always 3.

4) Depthwise Convolution: Depthwise convolution per-
forms convolution for each feature map separately. As shown
in Fig.|8] adder tree is configured to sum up the products from
each slice of multiplier array in parallel. For one MME, the
output channel number is 32.

5) Pointwise Convolution: Pointwise convolution is actu-
ally standard convolution with kernel size 1 x 1 (Fig. [9).
To fully take advantage of all the multipliers in MME, the
input feature map is divided into several M x M x 32 sub-
matrices, and these sub-matrices are shifted into line buffers
one after another. This idea comes from divide and conquer
algorithm in large matrix multiplication illustrated in Fig.
which consists in dividing large matrix into several small
matrices and sum the results up after doing small matrix
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Fig. 8. Depthwise convolution in MME

multiplication. For one MME, it is able to do M 2 % 32 and
32 x 9 multiplication at once. The adder tree sums up the 32
products in each cell as revealed by Fig. 0] Thus the output
channel number is 9.
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Fig. 9. Pointwise convolution in MME
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Fig. 10. Divide-conquer for large matrix multiplication

6) Normalization: After training, parameters of batch nor-
malization are fixed [[19]. Thus the complex normalization is
downgraded into multiplication and add operation.

7) Pooling: Average pooling and max pooling are treated
differently. As pixels of a feature map channel are output one
by one, average pooling could be easily calculated by adding
one more multiply-accumulate stage by a factor of 1/.S, where
S is average pooling size. On the other hand, max pooling
needs one more comparison stage.

8) ReLU: Same as the pooling layer, a ReLU stage is
added after the normalization stage. Three options: no ReLU,
standard ReLU and ReLU6 are selectable.

C. Memory Organization

To have an efficient memory organization, one has to
balance on-chip memory resources and external memory band-
width. On-chip memory is limited on FPGA but supplies very
high bandwidth. Contrarily, external memory has the capability
to store large amount of data but with the penalty of limited
bandwidth. Therefore, in this proposed accelerator, we adapt
the hierarchical memory methodology. Weight buffer loads

the needed parameters from external memory before each
convolution starts. This, on one hand, reduces the latency
caused by parameters loading, and on the other hand, avoids
the latency brought the limited bandwidth of external memory.
Besides, weight buffer is built as a ping-pong buffer (Fig. [TT)),
which means that when weight buffer 1 outputs data for
convolution, the weight buffer 2 loads the data from external
memory for the next one and vice versa.
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(a) buffer 1 outputs, buffer 2
loads
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loads

Fig. 11. Weight buffer in ping-pong structure

Intermediate feature maps is another way chosen during
system design to reduce processing time. Its size depends on
the number of MME instantiated and the size of feature map.

IV. RESULTS

The proposed accelerator architecture (Fig. [I2) is demon-
strated by implementing the MobileNetV2 network on the
Arria 10 SoC Development Kit (10AS066N3F40E2SG), which
contains 251680 ALMs, 2131 M20K, and 1687 DSP blocks.
The design consideration will be described and then followed
by implementation results with utilization.

A. Implementation Consideration

As mentioned in Section [l lower numerical precision is
sufficient for CNN. So 16-bit quantization strategy is chosen
because it is widely selected by previous works [2]] [3[] [20]]
[6].

Based on the description in Section 4-MME array is
decided to instantiate in this design after carefully balancing
the resources usage and processing time. The weight buffer
size is 36Kb as a ping-pong buffer. Since the update rate of
weights when performing depthwise separable convolution is
every M x M clock cycles. The size of intermediate feature
map buffer is 24.5Mb.

B. Implementation Results

Fig. [I2] presents the system architecture on Arria 10 SoC.
Since HPS is not used in this design, only FPGA part is
shown. The DDR4 memory is the one connected to the FPGA
part. The CNN accelerator runs at frequency 133MHz. Its
adder tree limits this frequency. A Nios II softcore micro-
processor is implemented for loading weights and input images
from flash memory to DDR4 external memory. An external
memory interface IP combined with a Modular Scatter-Gather
Direct Memory Access (mSG-DMA) IP are used to bridge
the buffers in the CNN accelerator and the FPGA memory,
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Fig. 12. System architecture of the FPGA design

whose maximum bandwidth is 8.5GB/s. This structure avoids
the host’s intervention during multiple transfers back and
forth with DDR4 memory and makes non-continuous data
movement more efficient. The function of customized mSG-
DMA controller makes it possible to drive mSG-DMA to
read/write different sizes of data from/to specific addresses,
in order to fit convolutions in various sizes.
The implementation result is listed in Table

TABLE 11
RESOURCE USAGE OF MOBILENETV?2
[ Name [ ALM [ DSP [ RAM |
MME 66127(26.3%) | 1278(75.9%) 51(2.4%)
Weight Buffer 9317(3.7%) 0(0%) 0(0%)
Feature Map Buffer 1(0%) 0(0%) 1779(83.4%)
Others 6308(2.5%) 0(0%) 14(0.6%)
[ Totally | 81753(32.5%) [ 1278(75.9%) [ 1844(86.5%) |

Table provides a comparison between the solution
proposed in this paper and other similar ones. Note that
MobileNetV2 has more complex structure and higher accuracy
on benchmarks.

TABLE IIT
COMPARISON TO OTHER IMPLEMENTATION
[ [ i8] [ [12] [ this paper |
Network RR-MobileNet MobileNetV1 | MobileNetV2
Platform | Zynq UltraScale+ Stratix-V Arria 10 SoC
Speed 127.4 fps 231.7 fps 266.2 fps

V. CONCLUSION

In this paper, a high-performance, scalable CNN accelerator
is proposed. This structure is optimized for depth separable
convolution, which results in remarkably less operations and
parameters. This makes it possible to run the CNNs on
portable devices. By choosing different number of MMEs and
variable on-chip memories, this accelerator can be fit into a
large or small FPGA. As an example, the latest MobileNetV2
is implemented on Arria 10 SoC FPGA, which achieves 266.6
fps and 170.6 GOPS.
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