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Abstract—Respiration rate (RR) and heartbeat rate (HR)
are important physiological parameters for a person. Impulse
radio ultra-wideband (IR-UWB) is a promising technology for
non-contact sensing and monitoring. This paper presents a
new method based on autocorrelation to measure the RR and
HR using IR-UWB radar. The correlation coefficient waveform
contains the vital sign signals, overcoming the effect of noise and
clutter. Applying fast Fourier transform (FFT), the respiration
frequency can be acquired easily. A clever method also based
on autocorrelation is proposed to locate the subject. The receive
signal matrix is divided into a set of bins in the direction of
fast time. By removing one block from the matrix each time
and re-applying the autocorrelation, the removed block resulting
the smallest correlations is corresponding to the location of
a subject. Moreover, variational mode decomposition (VMD)
algorithm is adopted to successfully separate the respiration and
heartbeat signals. Experiments are carried out using a PulsOn410
UWB radar. The results show that the proposed low-complexity
algorithm has high accuracy.

Index Terms—Respiration rates, heartbeat rates, IR-UWB,
autocorrelation, VMD.

I. INTRODUCTION

RESPIRATION and heartbeat rates are both basic but
crucial physiological parameters for human being, espe-

cially in medical application, public safety and rescue mission.
Remote sensing with IR-UWB is a promising technology

and has gradually been adopted since 2002, when the Federal
Communications Commission (FCC) in the United States
legalized the microwave range of 3.1G-10.6G Hz for civil
purpose [1]. Various applications have been developed using
UWB, such as physiological parameter monitoring, through-
wall detection, surveillance, real-time localization, robotic arm
tracking and microwave imaging [2]. The UWB signal has two
sets of definitions: one is defined as fractional bandwidth larger
than 20% and the other is defined as absolute bandwidth larger
than 500MHz [1]. Comparing with microwave Doppler radar,
IR-UWB has the advantages of lower power consumption,
smaller size and higher signal-to-noise (SNR), which has the
ability of anti-clutter in complex environment [3].

Many research works have been done in the field of UWB
remote sensing in the literature. Several works were focused
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on improving the hardware or structure of UWB radar, such as
improving the radar performance or using multiple radars for
complex tasks. In [4], the Tx and Rx antennas were separately
placed on the front and back of a human body for better
signal penetration. Several works were proposed for signal
enhancement, namely raising the signal-to-noise-and-clutter-
ratio (SNCR). A method to cancel the respiration-like clutter
was presented in [5]. An approach to eliminate the static clutter
was presented in [6]. Most of the existing studies put efforts on
transformation based algorithm. In [7], conventional FFT was
employed to analyze the frequency characteristics of infant
respiration. Hilbert-Huang transform (HHT) was used as a
time-frequency approach in [8]. Similarly, wavelet transform
[9] and short-time Fourier transform (STFT) were adopted to
analyze the vital signs in [10], which was able to obtain not
only the vital signs but also the spatial distance. There were
also plenty of applications developed using IR-UWB, such as
through-wall detection [3],[11], movement analysis [12], etc.

In this paper, a novel method based on autocorrelation is
proposed for vital sign measurement, including both RR and
HR, and also for determining the location. A waveform with
high SNCR can be derived directly from the autocorrelation
computation, without performing any pre-processing of the
original radar data. Applying the conventional FFT method,
respiration rate can be easily obtained. In general, heartbeat
signal is difficult to detect due to its small amplitude. We
propose using the VMD algorithm that can separate center
frequencies of RR and HR. In addition, location of a subject
is an important parameter. A novel algorithm also based on
autocorrelation is proposed in this work. By dividing the
radar data matrix into several blocks in fast time direction
and moving one block out every time, the autocorrelation
coefficient of the remainder matrix in slow time direction
can be produced. Subsequently the subject location can be
estimated from the correlation results.

The rest of this paper is organized as follows. Section II
describes the models of IR-UWB and vital sign signals. In
Section III, respiration rate and location estimation algorithms
based on autocorrelation are described in details. Furthermore,
the VMD method is employed to obtain the heartbeat signal.
Experimental results are demonstrated in Section IV and the
conclusion is drawn in Section V.

II. MODEL

A. IR-UWB Test Setup
Testing environment has critical influence on radar data. For

instance, many subjects in the same room can produce multiple
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signals at the UWB receiver, so it is difficult to discriminate
one signal from others. Strong electromagnetic environment
means interference and contamination of signals. To concise
the problem and put focus on the scheme and algorithm, a
simplified scenario is shown in Fig. 1 [13] where only a single
person in a relatively static environment, sitting or standing,
faces to the UWB antennas. The distance between the subject
and the radar can be adjusted during the experiments.

Tx

Rx

UWB Radar

Fig. 1. The basic test scenario with a single person facing the UWB radar

B. Model of Radar Signal

The operational principle of vital signs remote sensing, such
as respiration and heartbeat activities, is based on the detection
of UWB pulses reflected from the human body. The amplitude
variations as well as the time of arrival (ToA) of the reflected
pulse are used to evaluate the motions of the chest and heart,
then the status of cardiorespiratory activities can be derived.

When a pulse is transmitted, the radar receives its echoes
reflected from the subject. So the distance from the antenna
to the subject can be derived as in [3]:

s(t) = d0 + d(t)

= d0 + dr sin(2πfrt) + dh sin(2πfht)
(1)

where d0 is the nominal distance between antenna and human
chest wall, dr is the displacement amplitude of respiration,
dh is the displacement amplitude of heartbeat, fr represents
the respiration frequency and fh represents the heartbeat fre-
quency, respectively. The normalized received pulse is denoted
by δ(t), and the total impulse response can be represented by:

r(t, τ) = Akδ(τ − τk(t)) +
∑
i

Aiδ(τ − τi) (2)

where t is the observation time and τ is the propagation
time. Akδ(τ − τk(t)) denotes the response due to chest wall
micro-motion with propagation time τk(t) and amplitude Ak.∑
iAiδ(τ−τi) denotes the response from kinds of static target

with propagation time τi and amplitude Ai. τk(t) is determined
by antenna distance s(t), and can be expressed as:

τk(t) =
2s(t)

c
= τ0 + τr sin(2πfrt) + τh sin(2πfht)

(3)

where c is the light speed as about 3× 108 m/s, τ0 = 2s0/c ,
τr = 2dr/c and τh = 2dh/c .

UWB radar converts the received signals into a two-
dimension (2D) m × n matrix, denoted by R[m,n], and it
can be expressed as:

R[m,n] = r(t = mTs, τ = nTf ) (4)

where m and n represent the sampling numbers in slow time
and fast time, respectively. Ts is the pulse duration in slow
time, and Tf is the fast time sampling interval. Hence, the
row vectors record the received signals at different observation
time at each range bin while the column vectors record one
pulse reflected from different range bin.

Fig. 2 illustrates a respiration model in two directions, i.e.
slow time direction and fast time direction, ignoring other
signals such as static echoes and clutter. The horizontal axis
represents the fast time and the vertical axis represents the slow
time. The dashed line frame denotes the subject’s position.
Note that the periodicity displays not only in the fast time
direction duo to the pleural periodical movement, but also in
the slow time. Time point t0 and (t0 + T ) have the similar
waveform. It is the basis of the following description.
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Fig. 2. Slow time and fast time models of radar echoes from pleural periodical
movement

III. SCHEME AND ALGORITHM

A. Autocorrelation Algorithm
To simplify the problem, both the respiratory signal and the

heartbeat signal are generally regarded as periodic sinusoidal
signals. Therefore, there are two periodic sinusoidal compo-
nents in the echoes.

Autocorrelation, also known as serial correlation, is the
correlation of a signal with a delay copy of itself as a
function of delay. In other words, similarity exists between
the observations of the same subject at separate times, and it
is a function of time lag. The analysis of autocorrelation is
a mathematical tool for finding repeating patterns, such as to
find a periodic signal obscured by noise.

The autocorrelation coefficient ρx(τ) denotes the correlating
degree of the same event between two different periods, and
the expression is given by:

ρx(τ) =
E[(xi − µ)(xi+τ − µ)]

σ2
(5)
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where τ is the interval between series ith and (i+ τ)th, E is
the expected value operator, µ is the mean value of the series
x and σ is the deviation of x.

B. Algorithm for Respiration Rates

In the aforementioned matrix R each row represents an
observation in slow time. As shown in the Fig. 2, x(t0) is an
observation value at time t0, followed with x(t0+t), x(t0+2t),
· · · , and so on. Hence, we can get the autocorrelation coeffi-
cient between x(t0) and x(t0+t), x(t0) and x(t0+2t), · · · , and
so forth. The autocorrelation coefficient reaches the peak at
(t0 +T ) then gradually decreasing, fluctuating as a sine wave,
having a same frequency as the humans cardiorespiratory
activities. So its periodicity can be represented by T . Utilizing
the FFT method, the respiration frequency can be obtained
directly at the maximum value of spectrum due to its highest
strength. It is worth noting that data pre-processing is a
necessary step to cancel the static component by subtracting
the mean value first as shown in (5).

C. Algorithm for Location

Location of the subject is also an important information,
especially in the scenario of disaster rescue. Previously, time-
frequency analysis methods, such as wavelet [9] and STFT
(short-time Fourier transform) [10] were often been used. In
this paper, a novel algorithm also based on autocorrelation is
proposed.

All columns in the echo matrix R are grouped into k bins
of equal sizes. Generally, the size of each bin should be set
slightly larger than the thickness of a human body. As shown
in Fig. 3, the entire matrix is divided into k bins, marked in
dark color, in the direction of fast time, and the subject should
fall into one of these bins which is corresponding to his or
her estimated location. Each time we remove one bin out but
retain all others in the matrix, and then perform autocorrelation
operation similar to obtain the coefficients. Only the largest
autocorrelation coefficient is recorded. We repeat the same
procedure to remove one bin at a time, sequentially from
left to the right. Those recorded maximum autocorrelation
coefficients forms a vector. A bin with the smallest value in
the vector indicates the location of the subject.

Fig.3 illustrates that the original matrix is separated to k
bins, and the jth block is moved out. Assuming the subject is
located at the jth block, a significant falling of autocorrelation
coefficient should appear because the periodic cardiorespira-
tory signal with strong correlation has been removed and the
remaining noise has poor correlations.

Fig. 3. Illustration of correlation-based location method

D. Algorithm for Heartbeat Rates

Comparing with respiration signal, heartbeat signal is gen-
erally very weak in amplitude. Worse, it is usually close to
the high order harmonic of the respiration signal. Therefore,
it is very difficult to recognize and distinguish the heartbeat
signal from the clutter and noise [14].

VMD is a new algorithm for adaptive data analysis intro-
duced in recent years [15]. By decomposing the input signal
into a series of narrow-band components (NBCs) which are
concentrated around their corresponding center frequencies,
this algorithm can capture the relevant center frequencies quite
precisely and identify each dominant mode from the original
signal [16].

Computing the bandwidth of NBCs is essentially a con-
strained variational optimization problem, which is given as
follows:

min
{yp},{ωp}

Σp‖∂t[δ(t) +
j

πt
× yp(t)]e−jωpt‖22

s.t. Σpyp(t) = x(t)

(6)

where {yp} = {y1, y2, · · · , yp} represents the set of obtained
NBCs, {ωp} = {ω1, ω2, · · · , ωp} represents the corresponding
center frequencies, δ(t) represents the Dirac distribution func-
tion and p represents the total number of NBCs, respectively.
By introducing the Lagrange multiplier λ and penalty factor of
reconstruction fidelity term α, equation (6) can be converted
into an unconstrained one as below:

L({yp}, {ωp}, λ) =αΣp‖∂t[δ(t) +
j

πt
× yp(t)]e−jωpt‖22

+ ‖x(t)− Σpyp(t)‖22
+<λ(t), x(t)− Σpyp(t)>

(7)

Then the modes yp and the associated center frequency
ωp can be obtained using an alternating direction method of
multipliers approach. Hence, we can get the updated yp(ω) in
the nth cycle by the following as in [17]:

ŷn+1
p =

x̂(ω)− Σi6=pŷi(ω) + λ̂(ω)
2

1 + 2α(ω − ωp)2
(8)

where x̂(ω) is the Fourier transform corresponding to x(t),
and ŷi(ω) is the Fourier transform of yi(t) corresponding to
the ith sub-signal. The balancing parameter α represents the
data-fidelity constraint, and it can be taken as a Wiener filter.
ωp is updated as:

ωn+1
p =

∫ ∝
0
ω|ŷp(ω)|2dω∫ ∝

0
|µ̂p(ω)|2dω

(9)

where ŷk(ω) is the Fourier transform of the sub-signal yk(t).
The Lagrange multipliers λ is updated as follows, which is
useful to exact reconstruction of the input signal:

λ̂n+1(ω)←− λ̂n(ω) + β(ŷ(ω)− Σpŷ
n+1
p (ω)) (10)

where β is the update parameter of Lagrange multiplier. This
process will be terminated once the formula (11) satisfies.
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Σp‖ŷn+1
p − ŷnp ‖22
‖ŷnp ‖22

< ε (11)

where ε is the tolerance of convergence criterion and the
typical value is about 10−6.

Applying the VMD algorithm to the received data R after
pre-processing, respiration and heartbeat frequencies can be
measured simultaneously.

IV. EXPERIMENTS AND RESULTS

A. Hardware Structure

A typical UWB monostatic radar module namely PulsOn
410 is adopted in this experiment. As marked with the dotted
line in the Fig. 4, this radar module is composed of many
components, including processor, memory, digital baseband,
analog front-end, pulser, bandpass filter & LNA, and Tx
& Rx antennas. Pulser generates the high frequency pulses
and transmits them through Tx antenna under the control
of processor. The echoes are received by Rx antenna and
processed by processor after a bandpass filter.

The bandwidth of this radar is 2.2 GHz spanning the
frequency range of 3.1 to 5.3 GHz, with a center frequency
of 4.3 GHz [18]. A Raspberry Pi 3B acts as a core controller
that communicates with the radar by a USB cable and collects
the raw data from the radar in real-time.

Processor

Memory

Pulser
Analog

Front End

Bandpass Filter
&LNA

Tx 
Antenna

Rx
Antenna

Raspberry
Pi 3B

Digital  
Baseband

Fig. 4. Block diagram of the IR-UWB radar hardware system

B. Data Collection

The sampling frequency is set to 100 Hz. In slow time,
100 observations are recorded per second. Each observation
includes 480 sampling values, corresponding to 480 separated
bins.

According to the test setup shown in Fig. 1, a person sits on
a chair as the test subject, facing to the antenna of the radar.
We record a period of 30 seconds each time and sort these
data into a two-dimensional 3000×480 matrix.

C. Bandpass Filter

After removing the static clutter [3], the received echo signal
passes through a bandpass filter. The main purpose of the
band pass filter is to attenuate signals that are unrelated to
cardiorespiratory activities, such as clutter and high frequency
component.

The typical respiration frequency and heartbeat frequency
of human being are in the range of 0.1-1 Hz and 0.8-2 Hz,
respectively. Hence, a 4th order Butterworth type bandpass
filter with the passband of 0.1-2Hz is designed.

D. Measurement Method and Results

Setting the first row of the matrix as the start point, we
can calculate the autocorrelation coefficient between this row
and each row behind it. A vector of 1×3000 is produced
and its waveform is shown in Fig. 5. The obvious periodicity
can be found, which reveals the periodic vital sign signal.
The respiration frequency can be acquired by applying FFT
procedure to the waveform. In this example, the RR is about
0.29 Hz as in the spectrogram diagram shown in Fig.6.
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Fig. 5. Autocorrelation coefficient waveform shows the periodic signal
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Fig. 6. Spectrogram diagram of vital signs

In order to estimate the subject’s location, we divide 480
columns of matrix R into 12 bins. In our experiment, each
column covers about 9.1mm range in space and 40 columns
approximately covers the thickness of a normal person. If we
remove one bin from R, the remaining matrix is in the size
of 3000×440. Applying the same autocorrelation procedure to
the matrix as above, we only record the maximum value of
the autocorrelation coefficient. Since we have 12 bins in matrix
R, we can obtain a set of 12 maximum values by removing
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one bin at a time. A histogram of these 12 values is plotted
as shown in Fig. 7. A small dip is observed at the 5th bin,
which indicates the location of the subject is in the range of
1.46m-1.82m. The actual distance is 1.65m, appearing as a
good estimation of location. By adjusting the locations of the
subject, a set of test data is collected as shown in Table 1.

Location by Autocorrelation Algorithm
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Fig. 7. Location estimation using correlation algorithm

TABLE I
EXPERIMENTS FOR DIFFERENT SUBJECT LOCATIONS

Actual Distance(m) Detected Bin Index Estimation (m)

0.85 3 0.74-1.09
1.32 4 1.09-1.46
1.65 5 1.46-1.82
1.95 6 1.82-2.18
2.32 7 2.18-2.55
2.76 8 2.55-2.91

The data of autocorrelation coefficient are taken as the input
parameters of the VMD algorithm. The number of modes is
set to 2, corresponding to respiration and heartbeat signals.
The balancing parameter and the tolerance are set to 10000
and 10−6, respectively. By applying FFT, the decomposition
results are shown in Fig. 8. The respiration frequency is 0.29
Hz, which is the same as direct processing of autocorrelation
waveform, and the heartbeat frequency is 1.27 Hz. Corre-
spondingly, the RR can be estimated as 17 times/min and the
HR is about 76 beats/min.
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Fig. 8. RR and HR are obtained by VMD algorithm

V. CONCLUSION

Autocorrelation is a powerful tool to analyze periodical
signals. Due to the natural and intrinsic periodicity of vital
signs, the autocorrelation method is utilized in this paper,

which provides a simple yet effective solution to IR UWB
wireless sensing. Autocorrelation both in slow time and fast
time directions are investigated. The respiration frequency
and subject location can be acquired accurately from the
autocorrelation waveform. The heartbeat frequency can also
be derived from the VMD algorithm that can separate the
signal from the clutter and noise effectively. This proposed
scheme does not require burdensome computation, so it can be
efficiently implemented on integrated circuits and embedded
systems.
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